
J
H
E
P
0
6
(
2
0
0
7
)
0
2
7

Published by Institute of Physics Publishing for SISSA

Received: March 21, 2007

Accepted: May 17, 2007

Published: June 8, 2007

Supersymmetric branes in generic M-theory attractor

geometries

Saeid Ansari,a Jean Dominique Längea and Ivo Sachsab

aArnold-Sommerfeld-Center for Theoretical Physics,

Theresienstraße 37, D-80333 München, Germany
bDepartment of Physics and Astronomy, UCLA,

Los Angeles, CA 90095-1547, U.S.A.

E-mail: ansari@theorie.physik.uni-muenchen.de,

dl@theorie.physik.uni-muenchen.de, ivo@theorie.physik.uni-muenchen.de

Abstract: For a given attractor black hole with generic D6-D4-D2-D0-charges in four

dimensions we identify the set of supersymmetric branes, static or stationary in global

coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of

these BPS states, which includes branes which partially or fully wrap the horizon, should

play a role in understanding the partition function of black holes with D6-charges.

Keywords: Black Holes in String Theory, D-branes, M-Theory, Topological Strings.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep062007027/jhep062007027.pdf

mailto:ansari@theorie.physik.uni-muenchen.de
mailto:dl@theorie.physik.uni-muenchen.de
mailto:ivo@theorie.physik.uni-muenchen.de
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
7
)
0
2
7

Contents

1. Introduction 1

2. Near horizon geometry of D6-D4-D2-D0 black holes 3

3. Global coordinates and half BPS-branes 5

3.1 Half BPS M2-branes in global coordinates 6

3.2 Half BPS five-branes 8

3.2.1 M5 on C4 × Y 8

3.2.2 M5 on C2 × S3/Zp0 9

4. Conclusions 11

1. Introduction

An outstanding problem in studying extremal black holes in string theory and their relation

to conformal field theories is to get a precise microscopic description of four-dimensional

black holes with D6-D4-D2-D0-charges obtained by compactification of type IIA string

theory on a Calabi-Yau three-fold X. The charges are due to D-branes completely wrapped

on non-trival cycles of X. For generic charges one expects this black hole geometry to be

dual to some conformal quantum mechanics on the boundary of the near horizon AdS2

geometry.

For vanishing D6-charge the geometric entropy of such black holes can be given a

microscopic understanding upon lifting this solution to M-theory. From the M-theory

perspective this class of black holes are obtained by wrapping M5-branes with fluxes and

momentum along the M-theory circle on a four-cycle in X. The corresponding near-horizon

geometry is dual to some 1+1-dimensional conformal field theory which lives on the di-

mensionally reduced five-brane world volume [1]. This observation allowed the authors

of [1] to derive the asymptotic degeneracy of states using standard methods of conformal

field theory. Upon compactification to IIA theory the near horizon geometry obtained is

AdS2 ×S2. For this model a candidate for a dual quantum mechanics for the D4-D0 black

hole has been proposed [2] in terms of the degrees of freedom of probe D0-branes in this

background (see also [3, 4] for related discussions).

Lifting a black hole solution with D6-charge to M-theory one obtains instead a Calabi-

Yau compactification to a Taub-NUT geometry with fluxes [5]. While for large distances

compared to the size of the asymptotic Taub-NUT circle these black hole geometries are

effectively four-dimensional, the M-theory circle near the horizon is proportional to the

size of the horizon so that the M-theory perspective is more appropriate. Essentially, the
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near horizon geometry is a five-dimensional spinning black hole sitting at the center of the

Taub-NUT geometry. This 4D-5D connection has been exploited in [5] to relate a certain

partition function of a class of four-dimensional black holes to that of five-dimensional

black holes. The near horizon-geometry in five dimensions is essentially AdS2 × S3/Zp0.

Consequently for non-vanishing D6-charge the problem is not directly related to a 1+1-

dimensional CFT.1

On the other hand it appears that supersymmetric probe branes in the near horizon

geometry play a role in understanding the dual quantum mechanics and the black hole

partition function. They can be thought of as the “constituents” of the black hole in

question. The asymptotic degeneracy of the electric consituents in the background flux

geometry supported by the magnetic charges accounts for the black hole entropy in some

cases [2, 4]. For instance it has been shown in [2] that the ground state degeneracy of D0-

branes in a D4-brane flux background reproduces the correct asymptotic degeneracy for

D4-D0 charge black holes. Here the relevant Hamiltonian is the one of conformal quantum

mechanics on the moduli space of D0-branes in the flux background. An important subtlety

is though that the appropriate Hamiltonian appears to be that which generates translation

in “global” time rather than Poincaré time which coincides with asymptotic time.2 The

dominant contribution to the entropy comes from D0-branes bound to two-branes wrapping

the horizon of the black hole.

On another front it has been shown [9] that the elliptic genus of the (0, 4)-CFT [1]

dual to black holes with D4-D2-D0-charge has a dilute gas expansion dominated by multi-

particle chiral primaries which are just the stationary M2 (and anti-M2) branes in global

AdS3-coordinates, wrapped on holomorphic curves in the Calabi-Yau and sitting at the cen-

ter of AdS3. This provides a derivation of the OSV-conjecture relating the mixed partition

function of the black hole to the square of the topological string partition function [10].

The purpose of the present paper is to prepare the ground for extending the above-

mentioned results [2, 9] to black holes with D6-charge by describing the supersymmetric

probe branes in D6-charge backgrounds. Of course, in this case we do not have a known

“parent” 1 + 1-dimensional CFT to compare the probe-brane degeneracies with. Never-

theless one can hope that understanding the degeneracies of these states will give some

insight about the underlying microscopic theory. In section 2 we will describe the eleven-

dimensional near horizon geometry of a 4D black hole with generic D6-D4-D2-D0 charge.

While the full space-time geometry of a generic black hole with D6-charge is a solution of

five-dimensional N = 2 supergravity with nv − 1 vector-multiplets, the attractor mecha-

nism ensures that its near-horizon geometry is equivalently described in terms of N = 2

supergravity with just one vector multiplet - the graviphoton, i.e. minimal supergravity in

five dimensions. A classification of the solutions of minimal supergravity in five dimen-

1In fact it has been argued in [6] that black holes with D6-charge are related through a chain of string

dualities to BPS states without D6-charge. A similar relation was also conjectured in [7] based on an

embedding of space-time in the total space of the U(1)-gauge bundle over near horizon geometry of the

black hole. It would be interesting to see how these two approaches are related.
2The Poincare-Hamiltoinian has a contionus spectrum with no ground state as a consequence of the

incompletness of classical dynamics in Poincaré coordinates [8].
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sions can be found in [11]. This property simplifies the task of finding the relevant Killing

spinors for these black holes. In section 3 we obtain the near horizon killing spinor in

global coordinates and analyze the κ-symmetry for stationary probe branes in global time

along the lines of [12, 13]. In particular we find BPS two-branes wrapped on a holomorphic

two-cycle in the Calabi-Yau. These correspond to the zero-branes found in [13] and have

the right properties to be the relevant degrees of freedom for deriving the OSV-relation

for black holes with D6-charge. In addition we find BPS five-branes which wrap either

a holomorphic four-cycle in the Calabi-Yau and an S1 in space-time or wrap the horizon

S3/Zp0 completely and a holomorphic two-cycle in the Calabi-Yau. These may play a role

analogous to the horizon wrapped two-branes for D4-D0-black holes [2]. We plan to report

on these issuses in subsequent work.

2. Near horizon geometry of D6-D4-D2-D0 black holes

In order to be self-contained and to fix the conventions we first review the relevant static

half BPS solutions of four-dimensional N = 2 supergravity with nv vector multiplets [14].

The general stationary BPS configurations were derived in [15 – 17]. We then describe the

lift of these solutions to five dimensions [5] and determine the near horizon geometry for a

given set of four-dimensional charges.

We consider static single-centered BPS solutions in four dimensions. These solutions

are characterized by their asymptotic magnetic and electric charges (pI , qI), I = 0, . . . , nv

and their asymptotic moduli. As such they are completely determined in terms of 2nv + 2

real harmonic functions on R
3

HI(r) = hI +
pI

r
, HI(r) = hI +

qI

r
, (2.1)

subjected to the condition

pIhI − qIh
I = 0 . (2.2)

The corresponding metric is given by

ds2
(4) = − π

S(r)
dt2 +

S(r)

π
dx

2 . (2.3)

The function S can be expressed as

S = 2π
√

H0Q3 − (H0L)2 , (2.4)

with

L =
H0

2
+

HAHA

2H0
+

CABCHAHBHC

6(H0)2
,

Q3/2 =
1

6
CABCyAyByC . (2.5)

Here A,B,C ∈ {1, . . . , nv} and yA are implicitly determined by the equation

CABCyByC = 2HA +
CABCHBHC

H0
. (2.6)
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The gauge potentials are determined again by the harmonic functions (2.1) and

S(r) (2.4)

AI
(4) =

1

S

∂S

∂HI
dt + AI , dAI = ∗3dHI . (2.7)

To complete the four-dimensional description of generic D6-D4-D2-D0 attractor black

holes we give the complex scalar fields

tA =
HA + i

π
∂S

∂HA

H0 + i
π

∂S
∂H0

. (2.8)

As mentioned above for generic values of these charges the string coupling becomes

large in the near horizon regime. To allow for a unified description for generic charges we

now give the lift of these solutions to five dimensions. For a nice discussion of this lift see

for example [18].

The five dimensional metric is given by

ds2
(5) = 22/3V2(dψ + A0

(4))
2 + 2−1/3V−1ds2

(4) (2.9)

= −(22/3Q)−2(dt + 2L(dψ + A0))2 + (22/3Q)

(

1

H0
(dψ + A0)2 + H0dx

2

)

,

with

V =

(

1

6
CABCℑtAℑtBℑtC

)1/3

=
S

2πH0Q
. (2.10)

The four and five dimensional gauge potentials are related by

AA
(5) = ℜtA(dψ + A0

(4)) − AA
(4)

= −Y A

2Q
dt +

(

HA

H0
− L

Q
Y A

)

(dψ + A0) −AA (2.11)

where we introduced the five dimensional scalars

Y A =
yA

Q1/2
. (2.12)

They obey the relation

1

6
CABCY AY BY C = 1 . (2.13)

Let us now take the near horizon limit, r ≪ {pI , qI}, of the five-dimensional solution.

For this we define

σ =
1

r
,

dΩ2
3 = dθ2 + sin2 θdφ2 + (dψ/p0 + cos θdφ)2 ,

R2
AdS = lim

r→0

(

22/3H0Qr2
)

, (2.14)

J = lim
r→0

(

(H0)1/2L

Q3/2

)

and

Y A
0 = lim

r→0
Y A .
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Then, rescaling t appropriately (denoted again by t) we obtain [19]

ds2
(5) = R2

AdS

(

−
(

dt

σ
+ J(dψ/p0 + cos θdφ)

)2

+
dσ2

σ2
+ dΩ2

3

)

, (2.15)

AA
(5) = −Y A

0 22/3

√
3

A +
pA

p0
dψ , (2.16)

A =

√
3

2
RAdS

(

dt

σ
+ J(dψ/p0 + cos θdφ)

)

. (2.17)

The near horizon geometry depends on three parameters: the D6 charge p0, the AdS2

radius RAdS which is determined by the value of Q at the horizon and the five-dimensional

angular momentum J . These are also the quantities that appear in the Beckenstein-

Hawking entropy. In other words, as pointed out in [5] (see also [20]) the Taub-NUT

fibration, which interpolates between the four-dimensional and the five-dimensional geom-

etry gives a simple geometric representation of the entropy formula for the 4D-entropy of

D6-D4-D2-D0 black holes based on special geometry [21]. For J → 1 a closed light-like

curve develops. This singular limit has recently been analyzed in [7].

3. Global coordinates and half BPS-branes

Next we introduce global coordinates. For this we start with the expressions (2.15)

and (2.17) for the metric and gauge field respectively and change coordinates as (sin B := J)

t =
cos B cosh χ sin τ

cosh χ cos τ + sinh χ
,

σ =
1

cosh χ cos τ + sinh χ
, (3.1)

ψpoinc = ψ + 2 tan B tanh−1

(

e−χ tan

(

τ

2

))

.

The metric and field strength of the graviphoton then take the form

ds2
(5) = R2

AdS

(

− cosh2 χdτ2 + dχ2 + (sin B sinhχdτ − cos Bσ3)
2 + dΩ2

2

)

,

F =

√
3

2
RAdS (cos B cosh χdχ ∧ dτ − sin B sin θdθ ∧ dφ) , (3.2)

where dΩ2
2 is the line element of the unit two-sphere and

σ3 = dψ/p0 + cos θdφ .

It is straightforward to lift this near horizon geometry to eleven dimensions. The lifted

geometry is a direct product of the five-dimensional space and a Calabi-Yau three-fold X

with Kähler form Y A
0 ωA where ωA ∈ H2(X, Z) is a basis. The three-form C [3] in eleven

dimensions is proportional to the wedge product of the gauge field (2.17) with the Kähler

form. The Killing spinor equation in eleven dimensions is given by

0 =

[

∇M +
1

288

(

Γ N1N2N3N4

M − 8δN1

M ΓN2N3N4

)

GN1N2N3N4

]

ǫ ⊗ η ,

∇M = ∂M +
1

4
ωMABΓAB and G = dC [3] , (3.3)
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where the capital indices run from zero to ten. The Killing equation on the Calabi-Yau

is solved by the covariant constant spinors η± on the Calabi-Yau. We have chosen the

following conventions: the γ-matrices on the X w.r.t. an orthonormal frame we denote by

ρi with {ρi, ρj} = 2δij. The spinors η± obey the relations

ρ(7)η± = ±η± ,

ρīη+ = 0, ρiη− = 0 , (3.4)

where i and ī are indices w.r.t. complex coordinates on X. The γ-matrices of five-

dimensional space w.r.t. an orthonormal frame we denote by γa with iγ01234 = l1, such

that the eleven-dimensional γ-matrices read Γa = γa ⊗ ρ(7) and Γi = l1 ⊗ ρi.

With a convenient choice of the fünf-beine

e0 = cosh χdτ, e1 = dχ ,

e2 = dθ, e3 = sin θdφ , (3.5)

e4 = cos B

(

dψ

p0
+ cos θdφ

)

− sinB sinhχdτ ,

the five-dimensional part of the Killing equation becomes

0 = ∂ψǫ ,

0 =

(

∂φ +
1

2
cos B sin θγ24 − 1

2
cos θγ23 +

i

2
sin B sin θγ2

)

ǫ ,

0 =

(

∂θ −
1

2
cos Bγ34 − i

2
sin Bγ3

)

ǫ , (3.6)

0 =

(

∂τ +
1

2
sin B cosh χγ14 − 1

2
sinh χγ01 − i

2
cosh χ cos Bγ1

)

ǫ ,

0 =

(

∂χ − 1

2
sin Bγ04 +

i

2
cos Bγ0

)

ǫ .

These equations are solved by (see also [13])

ǫ = S(B,χ, τ, θ, φ)ǫ0 ,

S(B,χ, τ, θ, φ) = e−
i

2
Bγ4

e−
i

2
χγ0

e
i

2
τγ1

e
1

2
θγ34

e
1

2
φγ23

(3.7)

and ǫ0 is an arbitrary, constant four-component spinor.

In the following we classify the stationary supersymmetric probe branes in this back-

ground. This implies in particular that they are static in AdS2, i.e. χ̇ = 0 but allows for

M2-branes orbiting around the three-dimensional horizon as well as M5-branes partially or

fully wrapping the horizon.

3.1 Half BPS M2-branes in global coordinates

We begin with the set of stationary, supersymmetric M2-branes wrapping a holomorphic

two-cycle in X. The κ-symmetry condition is [22]

Γ ǫ ⊗ η = ǫ ⊗ η (3.8)

– 6 –
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with

Γ =
1

(p + 1)!
√

det h
ǫâb̂ĉΓâb̂ĉ

=
1√
h00

dXµ

dτ
ea
µγa ⊗ i l1 , (3.9)

where we have assumed that the M2-brane has positive orientation. The hatted indices

are the world-volume coordinates and hâb̂ is the pull-back of the space-time metric to the

world-volume. The second line is expressed in static gauge Ẋ0 = 1.

Let us first consider the case where the two-brane sits at fixed θ and φ but rotates in

the φ direction. For φ̇ 6= ±1 the BPS condition can never be satisfied. For φ̇ = 1 we have
√

|h00| = | cos(B) sinh(χ) + sin(B) cos(θ)| and

Γ(0) :=
dXµ

dτ
ea
µγa = − cosh χγ0 + sin θγ3 − sin B sinhχγ4 + cos B cos θγ4 (3.10)

and

S−1Γ(0)S = cos B cosh χ cos τ(−γ0 + γ4) + i(cos B sinhχ + sin B cos θ)γ04

+i cos B cosh χ sin τ(γ10 − γ14) − i sin B sin θ(cos φγ03 − sin φγ02)

+i sin B sin θ(cos φγ43 − sin φγ42) . (3.11)

Requiring the κ-symmetry condition be independent of τ implies

γ04ǫ0 = −ǫ0 . (3.12)

Furthermore if the latter condition is fullfilled we have

Γǫ ⊗ η =

(

iΓ(0)√
h00

ǫ

)

⊗ η = ǫ ⊗ η (3.13)

which is just the BPS condition (3.8). These solutions correspond to the zero branes found

in [13]. Note that this brane is also BPS for φ̇ = 1 while sitting at the north pole θ = 0 on

the base S2. This does not mean that this brane is static. Indeed, as the velocity along the

fiber is given by ψ̇/p0 + cos θφ̇, this configuration is geometrically equivalent to that with

φ̇ = 0 and ψ̇ = p0 which is a trajectory along the fiber of the S3/Zp0-bundle, i.e. a “great

circle” on S3/Zp0. If we assume instead that φ = const, θ = const, then ψ̇ = p0 necessarily

and the BPS condition reads

[− cos(θ)γ04 + sin(θ)(cos(φ)γ03 − sin(φ)γ02)]ǫ0 = ǫ0 . (3.14)

So the M2-brane can move along the fiber with constant velocity p0 and sits at any point

of the base space S2. The condition (3.14) reduces to (3.12) for θ = 0.

For ψ̇ = 0, φ = φ0 (φ = φ0 + π) constant and necessarily θ̇ = 1 (θ̇ = −1) the BPS

condition becomes

(cos(φ)γ20 + sin(φ)γ30)ǫ0 = ǫ0. (3.15)

– 7 –
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Geometrically, this is the case where the M2-brane moves along a meridian of the base S2

with constant velocity one and does not move along the fiber of the S3/Zp0-bundle over

S2.

To summarize, an M2-brane on C2 is BPS if and only if it rotates with unit angular

velocity on the covering space S3. For χ = 0 they describe uncharged null-geodesics on

S3, while for χ > 0 the M2-branes are charged and follow a time-like trajectory.3 The

rotation is required to stabilize them at fixed χ. This interpretation is compatible with the

four-dimensional analysis in [12] where it was observed that existence of static half-BPS

branes requires that the symplectic product of the charge vector of the probe brane with the

background charges does not vanish. Let us consider rotation along the fiber first. Then,

since the above results for the wrapped M2-branes are independent of B we can consider

vanishing B. In this case the non-vanishing of the symplectic product in four dimensions

requires that the two-brane rotates along the fiber. Invoking rotational invariance on S3 we

then conclude that rotation along any geodesic circle of the S3 will lead to a half BPS-state.

Note also that a M2-brane sitting for example at θ = 0 and rotating in the fiber with

ψ̇ = p0 preserves the same supersymmetry as an anti-M2-brane (i.e. negative orientation)

at θ = π and ψ̇ = p0. Thus these branes are mutually BPS. This property makes them

natural candidates to extend the observation of [9] to black holes with D6-charge.

3.2 Half BPS five-branes

We now consider stationary M5-branes which partially, or fully wrap the horizon of the

five-dimensional black hole. The remaining dimensions of the five-brane are wrapped on a

holomorphic cycle in X.

3.2.1 M5 on C4 × Y

Since the pull back of the RR-field strength, dC [3], to the world-volume of the five-brane

vanishes, we can consistently set the world-volume three-form field strength F âb̂ĉ to zero.

We will assume that the five-brane is wrapped holomorphically on C4. Then the CY-part

of Γ is just −1 [12], so that

Γ =
1

(p + 1)!
√

deth
ǫâb̂ĉd̂êf̂Γâb̂ĉd̂êf̂

= − 1

2
√

h

ǫâb̂∂Xµ∂Xν

∂σâ∂σb̂
ea
µeb

νγab ⊗ l1 . (3.16)

The generic situation can be understood by distinguishing three different S1-wrappings:

(i) Y = (τ, θ): here
√

h =

√

cosh2(χ) − sin2(B) sinh2(χ) . (3.17)

We then conclude that the brane is BPS (Γǫ = ǫ) for χ = 0 provided

e−
1

2
φγ23γ02e

1

2
φγ23ǫ0 = −ǫ0 . (3.18)

3See [13] for a detailed analysis of the corresponding Born-Infeld action.
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There is no condition on B and ψ. This brane wraps a geodesic circle in the horizon

S3/Zp0 and is uncharged w.r.t. background fluxes.

(ii) Y = (τ, φ): For B = 0 and χ = 0 the brane is BPS for all values of θ provided

γ04ǫ0 = −ǫ0 . (3.19)

In this case the brane wraps a geodesic in S3/Zp0 and is uncharged. For B 6= 0 the

brane is BPS only for χ = 0 and θ = π
2 with γ04ǫ0 = −ǫ0.

(iii) Y = (τ, ψ): here the brane is BPS for χ = 0 and B = 0 provided

e−
1

2
φγ23e−

1

2
θγ34γ04e

1

2
θγ34e

1

2
φγ23ǫ0 = −ǫ0. (3.20)

There is no solution for B 6= 0.

To summarize, a M5 on C4 × Y is BPS provided it wraps a maximal geodesic circle in

the squashed horizon, S3/Zp0 . From the ten-dimensional perspective these results may be

interpreted as follows: An M5-brane wrapped along the S2 base becomes an NS5-brane in

ten-dimensions which is clearly uncharged and therefore static at χ = 0. If the M5-branes

is wrapped along the S3-fiber instead, this will become a D4-brane with charge vector

aligned with that of the background. This brane cannot be static in global time unless

the background flux vanishes, i.e. B = 0. Note that the absence of static branes wrapped

along the fiber does not exclude stationary branes. Indeed for rotation in the φ direction,

φ̇ = ±1, we have

Γ =
−1√

h
[cosh χ cos Bγ04 ± sin θ cos Bγ34] (3.21)

with √
det h =

√

cos2 B(sinh2 χ + cos2 θ) . (3.22)

The BPS condition is then given by

γ04ǫ0 = ∓ǫ0 ,

sinhχ = ∓ tan B cos θ . (3.23)

These solutions correspond to rotating BPS configurations found in [13].

3.2.2 M5 on C2 × S3/Zp0

The induced metric hâb̂ is in this case













− cosh2(χ) + sin2(B) sinh2(χ) 0 − sin(B) sinh(χ) cos(B) cos(θ) − sin(B) sinh(χ) cos(B)
p0

0 1 0 0

− sin(B) sinh(χ) cos(B) cos(θ) 0 sin2(θ) + cos2(θ) cos2(B) cos(θ) cos2(B)
p0

− sin(B) sinh(χ) cos(B)
p0 0 cos(θ) cos2(B)

p0

cos2(B)
(p0)2













and
√

|h| = | cosh(χ) cos(B) sin(θ)/p0|. (3.24)
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We will again assume that the brane is wrapped holomorphically on C2 so that the CY -part

of Γ is l1 ⊗ iρ(7).

For B = 0 we then have

Γ =
1

4!
√

h

ǫâb̂ĉd̂∂Xµ∂Xν∂Xρ∂Xδ

∂σâ∂σb̂∂σĉ∂σd̂
ea
µeb

νec
ρe

d
δ Γabcd ( l1 ⊗ iρ(7)) (3.25)

= iγ0234 ⊗ ρ(7)

so that the brane is BPS for χ = 0 and (iγ0234 ⊗ ρ(7))(ǫ0 ⊗ η) = ǫ0 ⊗ η.

Next we consider the possibility of non-vanishing world-volume three-form flux F âb̂ĉ

corresponding to M2-branes wrapping C2 and bound to the M5-brane. For this we write

F = −f e2 ∧ e3 ∧ e4 − f ∗6(e2 ∧ e3 ∧ e4) . (3.26)

Here f is proportinal to the number of two-branes. Note that ea, a = 2, 3, 4 are the viel-

beine on the unit three-sphere, not the three-sphere with radius RAdS on which the world

volume is wrapped and which determines the induced metric relevant for the ∗6 operation.

Thus
∗6(e2 ∧ e3 ∧ e4) =

Vol(C2)

R2
AdS

e0 ∧ e5 ∧ e6 , (3.27)

where e0 is as in (3.6) and e5 and e6 are the zwei-beine on C2 with unit volume. Since in

the supergravity approximation Vol(C2)
R2

AdS

<< 1 we can neglect the last term in (3.26).

With this in mind we will now analyze the κ-symmetry condition. We find the repre-

sentation of [23] most convenient. Adapting the corresponding projector Γ to our situation

we get

Γ =
1

√

1 − 1
4f2

(

1

6!
√

det h
ǫâb̂ĉd̂êf̂Γâb̂ĉd̂êf̂ − 1

2 · 3!F
âb̂ĉγâb̂ĉ

)

=
1

√

1 − 1
4f2

(

iγ0234 ⊗ ρ(7) +
1

2
fγ234

)

. (3.28)

The BPS condition Γǫ = ǫ then implies that |f | = 2 tanh(χ) with

{

iγ0234ǫ0 = ǫ0 and ρ(7)η = η for f > 0

iγ0234ǫ0 = −ǫ0 and ρ(7)η = −η for f < 0 .
(3.29)

Upon double dimensional reduction along the fiber of S3/Zp0 to ten dimensions we get a

D4-brane with

Fâb̂ = F4âb̂ (3.30)

which in turn is SUSY according to [12].

Let us now analyze the case with non-vanishing four-brane flux B 6= 0. We make the

Ansatz

F = g e0 ∧ e2 ∧ e3 . (3.31)
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The κ-symmetry projector becomes

Γ =
1

√

1 + 1
4g2

(

iγ0234 ⊗ ρ(7) −
1

2
gγ023

)

. (3.32)

The BPS condition then implies χ = 0 and
{

iγ0234ǫ0 = ǫ0 , ρ(7)η = η 1
2g = tan(B) or

iγ0234ǫ0 = −ǫ0 , ρ(7)η = −η 1
2g = − tan(B) .

(3.33)

We note in passing that the value of g is not fixed by the equation of motion since F ,

as in (3.31), is a solution of the homogeneous equation d∗F = 0. On the other hand

the killing spinor depends on C [3] through (3.7) and thus g is fixed by the κ-symmetry

condition (3.33).

If both, f and g are non-vanishing the κ-symmetry projector takes the form

Γ =
1

√

1 + 1
4(g2 − f2)

(

iγ0234 ⊗ ρ(7) +
1

2
(fγ234 − gγ023)

)

. (3.34)

and the BPS-condition reads
{

iγ0234ǫ0 = ǫ0 , ρ(7)η = η , 1
2g = tan(B), 1

2f = tanh(χ)
cos B , or

iγ0234ǫ0 = −ǫ0 , ρ(7)η = −η , 1
2g = − tan(B), 1

2f = − tanh(χ)
cos B .

(3.35)

Thus a static M5-brane wrapped on the horizon and a two-cycle in X with M2-branes on

C2 bound to it is BPS for certain values of χ.

4. Conclusions

We have constructed supersymmetric probe branes, stationary in global coordinates of the

eleven-dimensional near-horizon geometry, of a generic four-dimensional, single-centered

attractor black hole. The motivation for this study came from the success [2, 9] in approx-

imating the black hole partition function by a dilute gas of non-interacting probe branes in

the near horizon geometry of attractor black holes without D6-charge. Our results should

provide the necessary ingredients for extending this approach to include D6-charge as well.

In particular, we expect the M2-branes found here to be relevant for understanding the

OSV partition function in the presence of D6-charge. Similarly the horizon wrapping M5-

branes should contribute, as collective excitations, to the partition function of the conformal

quantum-mechanical system dual to the AdS2 near horizon geometry.
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